Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport.
نویسندگان
چکیده
For cells to adapt to different tissues and changes in tissue mechanics, they must be able to respond to mechanical cues by changing their gene expression patterns. Biochemical signaling pathways for these responses have been elucidated, and recent evidence points to the involvement of force-induced deformation of the nucleus. However, it is still unclear how physical cues received at the plasma membrane (PM) spatiotemporally integrate to the functional chromatin organization of the cell nucleus. To investigate this issue, we applied mechanical forces through magnetic particles adhered to the PM of single cells and mapped the accompanying changes in actin polymerization, nuclear morphology, chromatin remodeling, and nuclear transport of soluble signaling intermediates using high-resolution fluorescence anisotropy imaging. Using this approach, we show the timescales associated with force-induced polymerization of actin and changes in the F/G actin ratio resulting in nuclear translocation of the G-actin-associated transcriptional cofactor, megakaryoblastic acute leukemia factor-1 (MKL). Further, this method of measuring nuclear organization at high spatiotemporal resolution with simultaneous force application revealed the physical propagation of forces to the nucleus, resulting in changes to chromatin organization, followed by nuclear deformation. We also describe a quantitative model that incorporates active stresses and chemical kinetics to evaluate the observed timescales. Our work suggests that mechanical activation of cells is accompanied by distinct timescales involved in the reorganization of actin and chromatin assembly, followed by translocation of transcription cofactors from the cytoplasm to the nucleus.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملNuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملThe N-CoR complex enables chromatin remodeler SNF2H to enhance repression by thyroid hormone receptor.
Unliganded thyroid hormone receptor (TR) actively represses transcription via the nuclear receptor corepressor (N-CoR)/histone deacetylase 3 (HDAC3) complex. Although transcriptional activation by liganded receptors involves chromatin remodeling, the role of ATP-dependent remodeling in receptor-mediated repression is unknown. Here we report that SNF2H, the mammalian ISWI chromatin remodeling AT...
متن کاملBRG1, a SWI/SNF chromatin remodeling enzyme ATPase, is required for maintenance of nuclear shape and integrity
We recently reported that reducing the levels of BRG1, the catalytic subunit of mammalian SWI/SNF chromatin remodeling enzymes, induces alterations in nuclear shape in a breast epithelial cell line. Immunostaining the BRG1 knockdown cells with nuclear lamina antibodies revealed a significantly increased frequency of grooves, or invaginations, in the nuclei. Disruption of each of the major cytop...
متن کاملChanges in Chromatin Accessibility Across the GM-CSF Promoter upon T Cell Activation Are Dependent on Nuclear Factor κB Proteins
Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a key cytokine in myelopoiesis and aberrant expression is associated with chronic inflammatory disease and myeloid leukemias. This aberrant expression is often associated with constitutive nuclear factor (NF)-kappaB activation. To investigate the relationship between NF-kappaB and GM-CSF transcription in a chromatin context, we analyz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 103 7 شماره
صفحات -
تاریخ انتشار 2012